Data Science & Machine Learning Providing Engagement & Learning Analytics

Audience Level: 
All
Session Time Slot(s): 
Institutional Level: 
Higher Ed
Abstract: 

In a world where we have no shortage of data, one thing that is present is a lack of understanding around our students and their interaction with online learning content. We talk about using data science and machine learning to help us understand more about your students.

Extended Abstract: 

As a teacher creating a lesson plan for your class, you know that that content is not going to engage 100% of your students. You cater for the middle ground and you are there to catch the upper and lower quartiles that do not match that lesson or learning style for that subject or topic. 

Yet, with online learning we continue to try and deliver content to our students without really understanding what is most effective for them. In fact, worst than that, with little standards around creation of online learning content, it's very hard to get any undertstanding about what works and what doesn't, for each student, and why. Not to mention the fact that you cannot catch those students who are not that middle ground and aren't engaged in that course you've created. 

So our aim is understanding the learner, the student, and how they engage in content, and how they learn. Where you have most analytics, that look at the way students have interacted with systems, we don't believe that is sufficient to understanding students and is open to statistical bias and misinterpretation.

Why? Because it lacks context. That context is the human element involved in all of these actions. Take that out of the equation and you don't understand why the event occured in the first place. Time on task, page views, submissions etc. are all open to interpretation in different ways, and while we can look for patterns in those data sets, it's still drawing impersonal, uncontextual averages, to which student success and predictive analytics is aligned. 

Using facial expression recognition to analyze the emotional response of students as they take courses online allows us to do a few things different from that. Not only can we start to look at the student as an individual; comparing their own data to themselves and how they respond (and even comparing it to the other, previously uncontextual data points like page views and submissions etc.) to add the individual context to really understand that student's interaction with the course and material. 

On top of this, we can see patterns in behaviors around certain key triggers/events, and track these behaviors to responses and content. Allowing us to really start to not only understand when a student is or isn't engaged, but what is increasing their learning. 

 

Conference Session: 
Concurrent Session 3
Session Type: 
Education Session